Selection on k-Dimensional Meshes with
Multiple Broadcasting

Y1 PaN, MouNirR Hampi!, GURDIP SINGH?

Department of Computer Science, University of Dayton, Dayton, OH 45469-2160, USA,
! Department of Computer Science, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong and °Department of Computing and Information Sciences,
Kansas State University, Manhatton, KS 66506, USA
email: pan@hype.cps.udayton.edu

Randomized selection algorithms on k-dimensional mesh-connected computers with multiple broad-
casting are proposed in this paper. We first show that a leader can be elected in O(log V) time on any -
dimensional mesh-connected computers with multiple broadcasting of size V. We then show that we can
find the p-th smallest element among a data set of size Nin O((log N + k + N v ("("“))) log N) expected
time using a regular N'/* x ... x N'/* k-dimensional mesh and in O((log N + kXN ("zk)) log N)
expected time using an irregular N@ *TV/02) o N@HD/G2) o ONGD/K2Y) g gimencional
mesh. This leads to a selection algorithm which runs in O((log N)?) expected time on a regular
((log N/ loglog NV)'/*)-dimensional mesh or on an irregular (loglog V)-dimensional mesh each with N
processors. To our best knowledge, this is the first polylogarithmic selection algorithm on meshes with
multiple broadcasting.

Received May 25, 1995, revised January 18, 1996

1. INTRODUCTION

The problem of selection has a number of applications in
computer science, computational geometry and statis-
tics. In particular, computing the median element of a set
of data is a standard procedure in statistics analysis.
Selection also has application in image analysis. In a
database context, selection amounts to answering a
query on the collection X of records. Many algorithms
such as parallel merging, sorting and convex hull
computation, use selection as a procedure [4]. Selection
can be stated formally as follows. Given a list X of N
elements whose elements are in random order and an
integer satisfying 1 <p<n, find the p-th smallest
element in X.

Many parallel selection algorithms have been designed
on different models to speed up the computation for
selection. Parallel selection algorithms on shared
memory models were discussed in [3,9]. A number of
algorithms exist for selection on a tree-connected
computer [1, 16]. Parallel selection algorithms on recon-
figurable linear arrays and meshes are discussed in
[10,11,13,14]. The selection problem has also been
tackled on variants of basic 2-dimensional mesh-
connected models with a broadcast capability
[5,6,8,12,15].

In this paper, a new and efficient algorithm design
methodology for solving the selection problem on
higher-dimensional meshes with multiple broadcasting
is proposed. The purpose of this work is to show that just
like semi-group computations, selection computations
can also be performed much faster on meshes with higher
dimensions. We discuss selection computations on both

regular and irregular meshes with multiple broadcasting.
Here, regular meshes are meshes with equal size
along each dimension and irregular meshes are those
which have different sizes along each dimension. We
propose a selection algorithm which runs in
O((log N + k + N'/*&+D)yjog N} expected time using
a regular N'* x ... x N'* k-dimensional mesh and
in 0((logN+k2N1/(k2k))log N) expected time using
an irregular N@7RAD/KR2) o N/
NE+D/62) k_dimensional mesh. This leads to a selection
algorithm that runs in O(SIOg N)?) expected time on a
regular ((log N/loglog N)!/?)-dimensional mesh or on
an irregular (loglog N)-dimensional mesh. To our best
knowledge, this is the first polylogarithmic selection
algorithm on meshes with multiple broadcasting.

2. SELECTION ON REGULAR £-DIMENSIONAL
MESHES

In this section, we describe an algorithm for selecting the
p-th smallest element in X from among N given unsorted
data items on a regular k-dimensional mesh with each
processor containing one data item. In a regular k-
dimensional mesh of N processors, the length of each
dimension is equal and is N'/*. Thus, in the case of a 2-
dimensional mesh, it is a square mesh and processors in
the same row or column are connected to a bus in
addition to the local links. Figure 1 shows an example for
a 2-dimensional 4 x 4 mesh with multiple broadcasting.
Hence, the mesh has the broadcasting capability in each
row and column. There are two types of data transfers
executed by each processor: routing data into one of its
four nearest neighbors via a local link and broadcasting

THE COMPUTER JOURNAL,

Vor. 39, No.2, 1996

€T0¢ ‘0z Arenuer uo ABojouyoe | pue sausIds Jo Ausieniun Buoy BuoH fe /B10'seunolpuoxo: jufwody/:dny wouiy pepeojumoq

http://comjnl.oxfordjournals.org/

SELECTION ON k-DIMENSIONAL MESHES 141

-

o
i
O

FIGURE 1. A 2-dimensional 4 x 4 mesh with multiple broadcasting.

R

data to the other processors in the same row (or column)
via the row bus (or column bus). Similarly, in a k-
dimensional mesh, broadcasting can be performed on a
bus along any dimension. As in [8, 12] it is assumed that a
broadcast takes constant time and only one processor is
allowed to execute a successful broadcast on a bus at any
one time. When two or more processors try to broadcast
data on the same bus at the same time, a collision is
detected by all the processors on the bus and no data are
successfully transferred. The collision detection mech-
anism of a bus system is a reasonable assumption and has
actually been implemented in many bus systems.

Our selection algorithm proceeds along lines similar to
those [2]. The divide-and-conquer strategy is applied to
solve the selection problem efficiently. Every iteration of
the algorithm involves a current set C of candidates, that
is, elements of the original input set 4 that have a chance
of being selected as the p-th smallest element of 4. In
every iteration, we partition the set C into three disjoint
subsets

C,={ceClc<m},
C, ={ceClc=m},
C; ={c e Clc > m},

where m is a distinguished element of C. The procedure
to choose the partition element m will be described later.

In case |C;| > p, we eliminate C, and C; and proceed
recursively to solve the problem of selecting the p-th
smallest element in C;. In case |C;] < pand |C; U C, |

> p, the desired element is m; finally, if |C; U C, | = p
then we proceed recursively to select the (p|C; U C,|) -th
smallest element in C;. In this manner we can replace the
given problem by a smaller problem. This process is
continued until the second condition above is satisfied and
we find the p-th smallest element in the set A.

In the algorithm, a current set of candidates is
maintained through a set of variables, IN, one at each
processor. For any IN whose value is 1, the correspond-
ing data item D in the same processor is in the current set
and will participate in future selection processes.
Initially, all data items are in the current set. We
equate active processors to those processors that contain
a data item in the current set. In the following
presentation, we assume that the N elements are

unique. We can assume the numbers are unique without
loss of generality since if we are given arbitrary numbers
Xg, X1,---XN_1, WE can replace x; by (x;, i) and define an
order of the tuples by (x;, i) < (xj,/)if x; < xjorif x; = x;
and i < j.

Before we describe the selection algorithm, we present
two simple procedures. The first one is a broadcast
operation and the second one is a leader election
algorithm which elect a leader among the active
processors. The broadcast operation can be performed
as follows.

Assume that PE(iy_y,...,i, i) is the source pro-
cessor in a broadcast operation. PE(i_y,...,i, i)
broadcasts its data item through its bus on dimension 0
to all processors in A(ix_y, ..., i, *). All the processors in
the subarray then broadcast it through the buses
on dimension 1 to all processors in A(i_p,...,*,*).
In general, processors then broadcast it through the
buses on dimension e to all processors in
A1, .- dep1,%,...,%). After k such broadcasts, all
processors receive the data item from PE(ix_y, ..., i,).
This procedure requires O(k) time.

Leader election is also very useful in situations where a
unique processor is to be identified to perform certain
functions. In our algorithm, an elected leader may not
hold the largest data item in the current set. The
important thing is that the elected processor is unique
and active. The simple leader election procedure is
described as follows.

First, a leader is elected among the active processors
for each subarray A(i;_y,...,#,*) in the mesh concur-
rently. We divide a subarray into two sections of equal
length and randomly select a section. The selection of a
section can be performed by a designated processor; e.g.
A(ix_y,...,i, 0) in subarray A(i_,,.-.,i,*). All the
active processors in the chosen section transmit their
addresses to their row buses. In the case that no active
processor is in the section, we can select the other section.
If a conflict is detected, we further divide the section into
two subsections and repeat the transmission and detec-
tion process. The above process is repeated until no
conflict is detected in all the subarrays. Now, each
subarray consists of only one active processor which also
has a data item in the current set. Processors selected
above each send their data items to processors
A(iy_y,...,4;, 0) through the buses on dimension 0.
Clearly, the whole process takes O(log N 1/ky time.

We repeat the above process for subarrays
A(§_1,---,02,%,0) and put the selected data item in
PE(iy —1,...,4, 0, 0). In general, we randomly select
an active processor in each subarray
A(iy_1,-- - ey %,0,...,0) and put the selected data item
in PE(i_1,...,0k, 0,...,0). After k such selections, we

obtain an active data item in the current set in
PE(0, 0,...,0). The active processor holding the data
item is a leader. If the data set has duplicates, we can send
a selected data item along with the ID of the processor
which holds it. After the above election process,

THE COMPUTER JOURNAL,

Voir. 39, No. 2, 1996

£T0Z ‘0z Afenuer uo ABojouyds] pue a0usIdS Jo AlseAlun Buoy| BuoH e /Hio'sfeulnolpio)xor julod;/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

142 Y. PAN,

M. Hampi AND G. SINGH

PE(0, 0,...,0) can inform all processors of the leader
elected in the mesh by a broadcast.

Since each selection along a dimension takes
O(log N'/*) time and we have k dimensions, we need

O(log N) time to elect a leader. The time to broadcast the
leader ID is O(k). Hence, the time taken in the leader
election algorithm is O(log N + k).

The selection algorithm on a regular k-dimensional
mesh with multiple broadcasting is described formally in
REGULAR-SELECT. In the algorithm, a mesh with k
dimensions is denoted as A(*,*,...,*) and a processor
with indices §,...,i;, ip is represented as
PE(L,...,i, iy). Thus, A(x,x) is a 2-dimensional
mesh and A(*,k) is a subarray (its k-th column of
Processors).

2.1. Algorithm REGULAR-SELECT (D, IN, B, p)

Input: A data vector D of length N and an integer p are
distributed in an k-dimensional N'/* x Nk . x N'/k
mesh with multiple broadcasting. Each processor con-
tains one data item. Also assume that initially, all
processors participate in the selection process; i.e. all INs
contain a value of 1.

Output. The p-th smallest element of the data vector D
is found and stored in memory cell m of all processors.

Step 1. We first elect a leader and select a unique data
item using the algorithm described before. This step
takes O(log N + k) time.

Step 2. The leader elected in step 1 broadcasts its local
data item. The data item is to be used as the partition
number m in the following steps. This step requires O(k)
time.

Step 3. All processors holding an active data item
compare the received value m with its local data items. If
m is larger than the data item, set its local B to 0,
indicating that the data item is in C;; otherwise, set B to
1, meaning that the data item is in C, or C;. The time
taken is O(1) in this step.

Step 4. Perform a binary summation over B and IN
cross the whole mesh and put the two sums in s and ¢,
respectively. Clearly, s is the size of C; or the number of
data elements, in the current set of candidates, which are
larger than the distinguished number m; and ¢ is the size
of the current set of candidates. This step basically
performs two semlgroup operations and can be per-
formed in O(N"/**+D)y time according to the result in
(12].

Step 5. Calculate |C)|=t—s5s—1, |C;/=1 and
|Cs| = s|. Here, |C;| is the size of the set C; for
i=1,2,3. If |C;| = p, then the p-th smallest element is
in C;. Hence, we set IN = 0 for all those processors
whose B = 1 to eliminate C, and Cs. Also change their
local B to 0. In this way, these processors become
passive and will not participate in future computation.
Then, we recursively call REGULAR-SELECT(D, IN,

|Ci| 4+ |C,| < p, then the p-th smallest element is in
C;. Hence, we set IN =0 for all those data items
whose corresponding B =0 or the data item whose
value is m to eliminate data elements in C; and C,.
Then, we recursively call REGULAR-SELECT(D, IN,
B, p—(|Ci|+|C;])). Obviously, this step takes a
constant time.

Since the above algorithm runs recursively, we need to
determine the total time for each iteration first. Accord-
ing to the above description, it is clear that each iteration
requires O(log N + k + N'/*E+D)y time,

We now calculate the average number of iterations for
this algorithm. Before we can talk about the average
number of iterations of an algorithm, we must agree on
what the probability distribution of the inputs is. For
selection, a natural assumption, and the one we shall
make, is that every permutation of the set of numbers to
be selected is equally likely to appear as an input. For
simplicity in the timing analysis assume that all elements
of the set to be selected are distinct. This assumption will
maximize the size of C; and C; constructed, and
therefore maximize the average time spent in the
recursive calls. Let R(N) be the expected number of
iterations required by REGULAR-SELECT to select the
p-th smallest element in a set of N elements. Clearly,
R(0) = R(1) = 1. In the best case, m is the p-th smallest
element and we do not need to continue calling
REGULAR-SELECT recursively. On the other hand,
in the worst case only one element is eliminated after
each iteration. In general, the selection problem of size N
is reduced to a subproblem of size i, 0 < i < N, after
each iteration. Since i is equally likely to take on any
value between 0 and N — 1, we have the following
relationship:

Z(R)+ 1) (1)

r-O

<N Z R(
We shall show that for N > 2, R(N) < 4log, N. For the
basis N =2, R(2) < EjgR(i) + 1 = 2 from (1), which

is smaller than 4log, 2. For the induction step, write (1)
as

2

Since log, i is concave upwards, it is easy to show that

N-1
Z log, N J log, xdx
< Nlog,N— N —2log,2+2. (3)
Substituting (3) in (2) yields

B, p). If |C,| < p and |C,|+ |C,| = p, then the p-th RIN) < 3 4 (Nlog. N — N — 2log. 2 2 +
smallest is the distinguished number m, stop. If (V) < N (08 g2+2)+
THE CoMPUTER JOURNAL, VoL. 39, No.2, 1996

£T0Z ‘0z Afenuer uo ABojouyds] pue a0usIdS Jo AlseAlun Buoy| BuoH e /Hio'sfeulnolpio)xor julod;/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

SELECTION ON k-DIMENSIONAL MESHES 143

3N +8log,2 — 8 —2
CN+floa2-8-2

Since N > 2, it follows that 3N + 8log, N — 10 > 0.
Thus, R(N) > 4log, N follows from (4); i.e. the total
average number of iterations of the selection algorithm
for a set of size N is at most 4log, N. The total expected
time of the selection algorithm is the product of the
average number of iterations and the time spent in each
iteration. Therefore, we have the following theorem.

<4log,N —

THEOREM 1

The REGULAR-SELECT algorithm selects the
p-th smallest element in a data set of N
elements on an NV x ... x N'/* k-dimensional mesh
in O((log N + k + N'*&+D)y 105 N} expected time.

It is interesting to analyse the time complexity
in Theorem 1. Assume that the size of the selection
problem is N, different k£ will result in different time
complexity for the algorithm. Let N'/***D) < 0(log N),
we get k> (logN/loglogN)?. Thus, if (logN/
loglog N)l/ 2 < k< logN, the expected time complexity
of algorithm REGULAR-SELECT is O((log N)?).

3. SELECTION ON AN IRREGULAR
k-DIMENSIONAL MESHES

In this section, we show that a better result can be
obtained if an irregular k-dimensional mesh with multi-
ple broadcasting is used. Here, the sizes of the k
dimensions in the mesh are different. In the case of two
dimensions, the mesh is called rectangular. Let us
consider an N@ KFD/Z) o N@TRED/GD) oy
N®/E2) b dimensional mesh. The previous algorithm
can still be applied here. Step 1 of the algorithm uses
(ke +1)/(k2%) + 2%k + 1)/ (k2*) + ...+ (k+ 1)/
(k2°))log N = (1/2+1/4+ ... +1/25 +1/2%) log
N =logN time using the previous transmission and
detection algorithm. Step 2 remains O(k) time. Steps 3
~and 5 use O(1) time as before. Step 4 performs two
semigroup operations on the irregular k-dimensional
mesh and requires O(k*N"/ (kzk)) time according to [7].
Thus, we have the following theorem.

THEOREM 2

We can select the p-th smallest element in a data set of
N elements on N@ EHD/K2) o N@TRED/RE) o
N/ dimensional mesh in O((log N+
K2NY (kzk)) log N) expected time.

Clearly, the above time complexity is lower bounded
by O((log N)?). Now let us calculate when it will reach
the lower bound. Assume that

NV < o(1), (5)
we have

k2* > logN. (6)

Obviously, when
2¥ > logN, @)

inequality (6) holds. Thus, when k > loglog N and
k* < log N, inequality (5) is satisfied and the expected
time complexity of the selection algorithm is
O((log N)?).

CONCLUSIONS

In this paper, the selection problem is discussed on k-
dimensional meshes with multiple broadcasting. It is
clear from the discussion that we can reduce the time
complexity of the selection problem by increasing the
number of dimensions of the meshes. Two types of
meshes are discussed in this paper. One is a regular mesh
where all dimensions have the same size. The other is an
irregular mesh where different different dimensions have
different sizes. It is shown that an O((log N)?) expected
time selection algorithm can be achieved on a (log N/
log log N)!/?-dimensional regular mesh of size N and on a
(loglog N)-dimensional irregular mesh. We conclude
that better time complexity for the selection problem
can be achieved on meshes with higher dimensions, and
fewer dimensions are needed on an irregular mesh than
on a regular mesh to achieve the same O((logN)?)
expected time complexity.

It is clear that the dominating factor of our algorithm
is the leader election algorithm for higher dimensional
meshes. If we could solve it in o(log N) time, then we can
reduce the total time complexity of the selection
algorithms presented in this paper. Since it is possible
to elect a leader on a bus system with an average time
complexity of O(loglog N) [17], it would be of interest to
know whether O(loglog N) time algorithms are also
achievable for electing a leader on k-dimensional meshes
with multiple broadcasting. This promises to be an
exciting area for further research.

ACKOWLEDGEMENTS

Y. Pan is supported in part by the NSF Research
Opportunity Award CCR-9540901 and by the Research
Council of the University of Dayton under Grant 94063-
13. M. Hamdi is supported in part by the Hong Kong
Research Grant Council under Grant RGC/HKUST
619/94E. G. Singh is supported in part by the NSF
Research Initiation Award CCR-9211621 and the NSF
CAREER Award CCR-9502506.

REFERENCES

[1] Aggarwal, A. (1984) A comparative study of X-tree,
pyramid and related machines. Proceedings of the 25th
Annual IEEE Symposium on Foundations of Computer
Science, Singer Island, FL, October, pp. 89-99.

[2] Aho, A., Hopcroft, J. and Ullman, J. (1974) The design
and analysis of computer algorithms. Addison-Wesley
Publishing Company, Reading, MA.

[3] Akl, S. G. (1984) An optimal algorithm for parallel
selection. Information Processing Lett., 19, 47-50.

THE COMPUTER JOURNAL,

Vor. 39, No. 2, 1996

£T0Z ‘0z Afenuer uo ABojouyds] pue a0usIdS Jo AlseAlun Buoy| BuoH e /Hio'sfeulnolpio)xor julod;/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

144

Y. PAN, M. HAMDI AND G. SINGH

(4]
(3]

(6]

(7]

(8]

9]

(10]

AKkl, S. G. (1989) The Design and Analysis of Parallel
Algorithms. Prentice-Hall, Inc, Englewood Cliffs, NJ.
Bhagavathi, D., Looges, P. J., Olariu, S., Schwing, J. L.
and Zhang, J. (1993) Selection on rectangular meshes with
multiple broadcasting. BIT, 33, 7-14.

Bhagavathi, D., Looges, P. J., Olariu, S., Schwing, J. L.
and Zhang, J. (1994) A fast selection algorithm for meshes
with multiple broadcasting, IEEE Trans. Parallel Dis-
tributed Systems, 5, 772-778.

Chen, Y. C., Chen, W. T., Chen, G. H. and Sheu, J. P.
(1990) Design efficient parallel algorithms on mesh-
connected computers with multiple broadcasting. IEEE
Trans. Parallel Distributed Systems, 1, 241-245.

Chen, Y. C.,, Chen, W. T. and Chen, G. H. (1990) Two-
variable linear programming on mesh-connected com-
puters with multiple broadcasting. International Confer-
ence on Parallel Processing, St Charles, IL. Vol. III, CRC
Press, Boca Raton, FL, pp. 270-273.

Cole, R. and Vishkin, U. (1986) Deterministic coin tossing
and accelerating cascades: Micro and macro techniques
for designing parallel algorithms. Proc 18th Annual ACM
Symposium on Theory of Computing, Berkeley, CA, pp.
206-219.

ElGindy, H. and Wegrowicz, P. (1991) Selection on the
reconfigurable mesh. International Conference on Parallel

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Processing, St Charles, IL, August 12-16. Vol. III, CRC
Press, Boca Raton, FL, pp. 26-33.

Hao, E., MacKenzie, P. D. and Stout, Q. F. (1992)
Selection on the reconfigurable mesh. The Fourth Sympo-
sium on the Frontiers of Massively Parallel Computation,
McLean, VA, October 19-21. IEEE CS Press, Los
Alamitos, CA, pp. 38—45.

Prasanna Kumar, V. and Raghavendra, C. S. (1987)
Array processor with multiple broadcasting. J. Parallel
Distributed Comp., 4, 173—-190.

Olariu, S., Schwing, J. L., Shen, W., Wilson, L. and Zhang,
J. (1993) A simple selection algorithm for reconfigurable
meshes. J. Parallel Algorithms Appl., 1, 29-41.

Pan, Y. (1995) Order statistics on a linear array with a
reconfigurable bus. Future Generation Computer Systems,
11, 321-327.

Stout, Q. F. (1983) Mesh Connected Computers with
Broadcasting. IEEE Trans. Comp., 32, 826—830.
Tanimoto, S. L. (1984) Sorting, histogramming, and
other statistical operations on a pyramid machine. In
Rosenfeld, A. (ed.), Multiresolution Image Processing and
Analysis. Springer-Verlag, New York, pp. 136—145.
Willard, D. E. (1986) Log-logarithmic selection resolution
protocols in a multiple access channel. SIAM J. Comp.,
15, 468—-477.

THE COMPUTER JOURNAL,

VoL. 39,

No. 2, 1996

£T0Z ‘0z Afenuer uo ABojouyds] pue a0usIdS Jo AlseAlun Buoy| BuoH e /Hio'sfeulnolpio)xor julod;/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

